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We demonstrate the quantitative extraction of multidimensional
distribution functions in the presence of grossly inhomogeneous
fields. Examples are shown for diffusion—T2 distribution func-
tions and T1 − T2 distribution functions. The pulse sequences con-
sist of an initial editing sequence followed by a long series of
nominal 180◦ pulses. They are designed such that the kernels de-
scribing the relationships between the distribution functions and
the measured data are separable. The required phase cycling is dis-
cussed. We analyze in detail the extra spin dynamics effects due to
the strong field inhomogeneities including the effects on diffusion
and relaxation. A recently developed algorithm is used to invert
the data and extract stable multidimensional distribution functions
in an efficient manner. We present examples for several applica-
tions of this new technique. Diffusion–relaxation distribution func-
tions can be used for fluid identification and for the characteri-
zation of pore geometry of porous media based on the effects of
restricted diffusion. We have also determined T1 − T2 distribution
functions of water saturated sedimentary rock and find excellent
agreement with previous measurements performed in homogeneous
fields. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

NMR diffusion (1–3) and relaxation measurements (4–6) have
become important tools to study the structure of porous media,
ranging from biological systems to hydrocarbon bearing sedi-
mentary rocks. In recent years, “inside–out” instrumentation has
been developed to extend NMR measurements to samples that
do not fit into the bore of a standard NMR magnet. Applications
include well logging, i.e., the evaluation of earth formations from
a borehole (7); materials testing with one-sided NMR devices
for the evaluation of objects such as tires and construction ma-
terials (8); and sensitive diffusion measurements with strayfield
NMR setups (9, 10).

When the sample sits outside the measuring device, the ap-
plied dc and RF fields across the sample are necessarily strongly
inhomogeneous, with inhomogeneities that are typically much
1 To whom correspondence should be addressed. E-mail: hurlimann@
ridgefield.sdr.slb.com.
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larger than the nominal RF field strength. Under such conditions,
it is in general not possible to obtain spectroscopic information,
unless there are special correlations between the B0 and B1 in-
homogeneities and special pulse sequences are used (11). Every
pulse acts as a slice selective pulse and the exact spin dynam-
ics of any multipulse sequence becomes quickly very complex.
We have recently analyzed relaxation and diffusion effects for
general pulse sequences in such inhomogeneous fields (12, 13)
and shown that it is possible to extract quantitatively diffusion
coefficients and relaxation times.

Here we demonstrate that it is possible to measure multidi-
mensional distribution functions involving diffusion, longitu-
dinal, or transverse relaxation, even in the presence of strong
inhomogeneities of the applied fields. Such multidimensional
distribution functions contain inherently more information than
one-dimensional distribution functions and are useful for a range
of different applications that we present.

In this paper, we first discuss the pulse sequences underlying
this technique. We analyze the spin dynamics including dif-
fusion and relaxation effects, under full treatment of the off-
resonance effects. The case for diffusion—T2 correlation mea-
surements is treated in detail in the Appendix, including the
required phase cycling. The main theoretical predictions are
then verified experimentally. We demonstrate the successful ex-
traction of both D − T2 and T1 − T2 distribution functions for
applications of fluid typing and for the characterization of the
geometry of porous media.

2. PULSE SEQUENCES FOR D − T2 AND T1 − T2

DISTRIBUTION FUNCTIONS

The measurement of two-dimensional distribution functions
between two dissipative quantities x1 and x2 (such as relaxation
and diffusion) is based on sequences where two or more inde-
pendent times are varied in such a way that the kernel separates
out. The measured magnetization M(t1, t2) then depends on the
quantities of interest x1 and x2 through

M(t1, t2) =
∫ ∫

dx1 dx2 f (x1, x2) k1(x1, t1) k2(x2, t2). [1]
1090-7807/02 $35.00
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FIG. 1. Pulse sequence to measure 2D distribution functions. The first two
sequences are examples of diffusion editing sequences, followed by the CPMG
sequence. In the first sequence (a), the diffusion editing is achieved with a
stimulated echo, whereas in the second sequence (b), a direct echo with increased
echo spacing is used. The bottom sequence (c) is a T1 editing sequence, followed
by CPMG detection. In this example, the T1 editing is achieved by an inversion–
recovery sequence.

Here f (x1, x2) is the distribution function of interest and k1 and
k2 are the kernels. These experiments are analogous to conven-
tional multidimensional NMR spectroscopy, where the kernels
are typically phase factors of the form eiαx1t1 and the distribu-
tion function f (x1, x2) is obtained from M(t1, t2) by multidi-
mensional Fourier transformation. In contrast, the kernels for
relaxation and diffusion measurements are generally of an ex-
ponential form, e−αx1t1 , and the data inversion requires a multi-
dimensional inverse Laplace transformation.

Examples of pulse sequences to measure diffusion–relaxation
and relaxation–relaxation cross correlations are shown in Fig. 1.
These pulse sequences consists of two distinct parts. The initial
part can be thought of as an editing sequence where the sig-
nal is made sensitive to one of the quantity of interest, such as
T1 relaxation or diffusion. This is followed by a long series of
180◦ pulses, used to determine the T2 relaxation time. All se-
quences in Fig. 1 are generalized CPMG sequences, where the
“editing” sequence replaces the standard 90◦ pulse of the CPMG
sequence.
In the first sequence shown in Fig. 1, the initial editing se-
quence consists of a stimulated echo sequence. By varying the
NKATARAMANAN

time δ, the sensitivity to diffusion can be varied systematically.
For this reason, we call this a diffusion editing sequence. This
sequence for static gradients is similar to the sequence used
by Peled et al. [14] with pulsed gradients. In the second se-
quence, the diffusion sensitivity is achieved by a direct echo
sequence where the initial echo spacings tE, 1 are varied. The
third sequence shown in Fig. 1 can be used to measure T1 − T2

correlations and consists of an initial 180◦–90◦ inversion recov-
ery sequence followed by the standard CPMG sequence. In all
these sequences, it is advantageous to set the echo spacings in
the second part of the sequences, tE , short enough to make the
decay times independent of diffusion.

3. MEASUREMENTS IN GROSSLY
INHOMOGENEOUS FIELDS

For the sequences shown in Fig. 1, it is straightforward to list
the kernels k1(x1, t1) and k2(x2, t2) for the on-resonance case.
For spins with relaxation times T1 and T2, diffusing in a constant
gradient g with a diffusion coefficient D, they are given by

ko
1,a(D, δ) = 1

2
exp

{
−γ 2g2δ2 D

(
� − δ

3

)}

× exp

{
−� + δ

T1
− 2δ

(
1

T2
− 1

T1

)}
[2]

ko
1,b(D, tE,1) = exp

{
−1

6
γ 2g2 Dt3

E,1

}
exp

{
−2tE,1

T2

}
[3]

ko
1,c(T1, τ1) = 1 − 2 exp

{
− τ1

T1

}
[4]

ko
2(T2, ktE ) = exp

{
−ktE

T2

}
. [5]

In these expressions, the superscript o indicates that they apply
on-resonance and the second subscript in k1 specifies the se-
quence. In strongly inhomogeneous fields, the situation is com-
plicated because all pulses become slice selective and the kernels
depend in general on the offset frequency. This complication can
be overcome with proper phase cycling, so that the kernels for
inhomogeneous fields retain approximately the general form of
Eqs. [2]–[5].

To calculate the kernels relevant for grossly inhomogeneous
fields, the analysis of the spin dynamics of the many-pulse se-
quences shown in Fig. 1 has to include the effects of diffusion,
relaxation, and strong field inhomogeneities. It is natural to di-
vide the analysis of the sequence into its two distinct parts, the
initial “editing” sequence followed by the repeated refocusing.
A detailed discussion of the spin dynamics for the two parts can
be found in Appendix A for the sequence of Fig. 1a. Here we
give a brief summary.
The “editing” part of the sequence consists of only a few
pulses and the spin dynamics can be determined exactly by
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been reduced by 2t90/π to compensate for finite pulse duration
effects which gives rise to the extra phase factor (13).
D − T2 AND T1 − T2 IN IN

TABLE 1
Phase Cycling for the Diffusion Editing Sequence

with Stimulated Echo

φ1 φ2 φ3 φ180 φacq

0 0 0 π/2 π

π 0 0 π/2 0
0 π 0 π/2 0
π π 0 π/2 π

0 0 π π/2 0
π 0 π π/2 π

0 π π π/2 π

π π π π/2 0
π/2 0 0 0 π/2

−π/2 0 0 0 −π/2
π/2 π 0 0 −π/2

−π/2 π 0 0 π/2
π/2 0 π 0 −π/2

−π/2 0 π 0 π/2
π/2 π π 0 π/2

−π/2 π π 0 −π/2

Note. The phases of the first three 90◦ pulses, φ1, φ2, and φ3, the phase of all
the 180◦ pulses, φ180, and the acquisition phase, φacq , are cycled through these
16 steps to select the stimulated echo contributions.

considering all possible coherence pathways (13). This allows
us to calculate the spectrum and dependence on diffusion and re-
laxation of the magnetization at the end of the editing sequence,
�mA. A key point is that we use a phase cycling (given in Table 1)
such that a single coherence pathway is selected. This results in
the simple diffusion dependence exp{−γ 2g2δ2 D(� − δ

3 )} that
is uniform across the whole spectrum.

In the second part of the sequence, the magnetization �mA is
repeatedly refocused by a long series of 180◦ pulses to obtain
the relaxation information. The exact spin dynamics of a long
series of refocusing pulses in strongly inhomogeneous fields
becomes very complicated, because each pulse creates new co-
herence pathways. The situation can be greatly simplified by
reducing the echo spacing tE sufficiently to make the diffusion
effect insignificant in this part of the sequence. This allows us
to use the “effective rotation axis” approach (12, 15). After a
short transient that extends over only a few echoes, the echoes
approach an asymptotic shape with a simple relaxation decay.
Using the notation of Appendix A, the magnetization after the
first few echoes can be written as

�m(ktE ) ≈ n̂(n̂ · �mA) exp{−t/T2eff}. [6]

Here n̂ is the effective rotation axis describing the refocusing
cycle (given in Eqs. [18] and [19]), �mA is the magnetization
at the end of the editing sequence (given in Eq. [13]), and the
effective relaxation rate 1/T2eff is a weighted average of 1/T2

and 1/T (given in Eq. [23]). Note that in this implementation,
1

the dependence of the magnetization on diffusion and relaxation
remains separable and exponential.
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3.1. Experimental

We performed measurements in the fringefield outside a hor-
izontal bore 2-T superconducting magnet. The NMR probe and
sample were placed 0.5 m outside the end of the magnet, where
the 1H Larmor frequency is 1.764 MHz with a constant static
gradient of 13.2 G/cm.

The samples are typically 2 cm in diameter and 3.75 cm in
length. In our geometry, RF pulses excite a slice along the axis of
the sample. With pulse durations of t180 = 24 µs, the slice thick-
ness is about 7.8 mm. Note that the sample diameter significantly
exceeds this slice thickness. We describe here experiments with
samples that include water, hydrocarbon oil, and rock cores sat-
urated with brine. In some cases we used NiCl2 to reduce the
relaxation times of water to T1 = T2 to 202 ms. The hydrocar-
bon sample was a petroleum based viscosity standard, called
S3,2 with a kinematic viscosity of 4 mm2/s at 25◦C.

3.2. Testing of Phase Cycling

We have tested the key features of the spin dynamics calcu-
lations in Appendix A that leads to Eq. [6] with measurements
on a sample of water. In Fig. 2, the stimulated echo followed
by the first ten echoes are shown for five different values of
δ and a fixed diffusion encoding time of Td = 20 ms. The val-
ues of δ were chosen such that for the diffusion coefficient of
water, D, the exponent of the diffusion term, γ 2g2δ2 D(� −
δ
3 ) = 0.2, 0.4, 0.6, 0.8, 1.

The results in Fig. 2 validate the phase cycling. Increasing
δ leads to an overall signal decrease by diffusional attenuation
without changing the shapes of any of the echoes. This confirms
that the diffusion attenuation is uniform for all offset frequencies
because a single coherence pathway has been selected.

3.3. Echo Shape

Within a given trace of Fig. 2 there is a significant variation
in echo shape between the stimulated echo and the first three
echoes. Afterwards, the echo shapes change very little and ap-
proach an asymptotic shape. For these later echoes, the second
and third terms in Eq. [17] have averaged out and the shape is
determined solely by the first term, which is independent of echo
number. This asymptotic spectrum, S(�ω0), is given by

S(�ω0) =
∫

dω1 F(�ω0, ω1)

×Re
{
�

(3)
+1,0�

(2)
0,−1 �

(1)
−1,0e+i2�ω0t90/π

}
n2

y . [7]

Here F(�ω0, ω1) is the joint distribution function of the offset
of Larmor frequency, �ω0, and of the RF field strength, ω1, over
the sample. We have assumed that the initial pulse spacing δ has
2 Cannon Instrument Company, P.O. Box 16, State College, PA 16804-0016.
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FIG. 2. Measured signals of the stimulated echo and the following first 10 echoes for the diffusion editing sequence shown in Fig. 1a. The 5 traces correspond
to different values of δ, each with T = 20 ms. The sample is water and the meas
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2-T superconduction magnet. The acquisition time for each echo is 160 µs; the e

A comparison of experimental and theoretical echo shapes is
shown in Fig. 3. The theoretical curve was obtained by Fourier
transformation of Eq. [7], assuming a B0 field with a constant
gradient and a uniform B1 field, appropriate for our experimental
condition. The agreement is excellent.

3.4. Transient Effect in Initial Echo Amplitudes

As a first step in the data analysis, we extract echo amplitudes
from the measured NMR signal. Optimal signal-to-noise ratio is
obtained by using the expected echo shape as matched filter. For
simplicity, we use the asymptotic echo shape shown in Fig. 3 as
a filter for all echoes. In Fig. 4, we show the first 20 amplitudes
extracted from the data shown in Fig. 2 for the shortest value
of δ. In this case, the relaxation time is much longer than the
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FIG. 3. Comparison of measured (dots) and calculated (solid line) asymp-

totic echo shape for the stimulated echo–CPMG sequence. Both echoes have
been normalized with respect to their peak value. There are no other adjustable
parameters.
urement was preformed at a frequency of 1.764 MHz in the strayfield outside a
ho spacing is 375.2 µs.

echo spacing and the echo amplitudes are almost constant after
a pronounced transient of the first 2 echo amplitudes. The ini-
tial amplitude corresponds to the stimulated echo. Its amplitude
and the amplitudes of the first few CPMG echoes have contribu-
tions from the second and third terms in Eq. [17] leading to the
transient similar to the effect observed with the standard CPMG
sequence in inhomogeneous fields (12).

This transient depends only on the B0 and B1 field distribu-
tions and the filter used and it is independent of diffusion or
other properties of the sample. We can therefore determine this
transient initially either experimentally or theoretically by using
Eq. [17] for the magnetization and Eq. [7] for the filter. Figure 4
shows excellent agreement between these two approaches. Us-
ing this calibration, we correct the first few echo amplitudes of
all our data for this transient effect.
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FIG. 4. Transient effect due to spin dynamics in grossly inhomogeneous
fields: Experimental results (dots) are compared with theoretical results (line)
of echo amplitudes for the stimulated echo and subsequent 19 echoes obtained
with matched filtering, using the asymptotic echo shape of Fig. 3. The relaxation

time of the water sample is much longer than the echo spacing of 375.2 µs. The
transient effect is independent of diffusion.
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and relaxation are correlated.
D − T2 AND T1 − T2 IN IN

3.5. Kernels for Inhomogeneous Fields

The extracted echo amplitudes, corrected for the initial tran-
sient effect, are then described by

A(t, δ) =
∫ ∫ ∫

d D dT2eff dT1 f (D, T2eff, T1) exp

{
−Td

T1

}

× exp

{
−2δ

(
1

T2
− 1

T1

)}
exp

{
−q2 D

(
� − δ

3

)}

× exp

{
− t

T2eff

}
. [8]

Data are acquired with a fixed total encoding time, Td = � + δ,
for several values of δ. In practice, δ  Td , so that the term
exp{−2δ( 1

T2
− 1

T1
)} can be neglected compared to exp{−Td/T1}.

It is useful to introduce the two-dimensional distribution func-
tion fTd (D, T2eff):

fTd (D, T2eff) ≡
∫

dT1 f (D, T2eff, T1) exp

{
−Td

T1

}
. [9]

This is the diffusion–relaxation time distribution function for
spins surviving at time Td . We can then rewrite Eq. [8] as

A(t, δ) =
∫ ∫

d D dT2eff fTd (D, T2eff)

× exp

{
−q2 D

(
� − δ

3

)}
exp

{
− t

T2eff

}
. [10]

This expression for the processed echo amplitudes corresponds
closely to the kernels listed in Eqs. [2] and [5] for the on-
resonance condition. The only difference is that the trans-
verse relaxation time T2 is replaced by the effective relaxation
time T2eff. Otherwise, the effects of strong inhomogeneities
are only reflected in the echo shape and the transient effect.
Equation [10] shows that the two-dimensional distribution func-
tion fTd (D, T2eff) is related to the measured echo amplitudes by
a two-dimensional inverse Laplace transformation. To extract
the correlation quantitatively we used an inversion scheme that
is based on an algorithm initially developed to analyze T1 − T2

measurements (16). Details of the algorithm can be found in
(17). A summary and issues specific to the current application
are presented in Appendix B.

3.6. Experimental Data

3.6.1. Doped Water

We performed measurements on NiCl2 doped water to test
the method of amplitude extraction and accuracy of Eq. [10]. In
Fig. 5, extracted echo amplitudes, transient corrected, are shown
for 24 different values of δ with a total encoding time Td = 30 ms.
All 24 traces show an exponential decay with identical decay

times T2eff = 202 ms that coincide with the independently mea-
sured relaxation times T2 = T1. The relative amplitudes of the
OMOGENEOUS FIELDS 35
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FIG. 5. Results of fringefield measurements with diffusion editing sequence
on doped water. Echo amplitudes are plotted versus time after the stimulated
echo for 24 different values of diffusion editing, δ. The encoding time Td was
30 ms. The echo amplitudes were extracted from the data using the asymptotic
echo shape in Fig. 3 and the first few amplitudes were corrected for the transient
effect as shown in Fig. 4. All traces exhibit identical exponential decays with the
expected decay time T2 = T1 = 202 ms. The insert shows the relative amplitude
of the traces (crosses) as a function of γ 2g2δ2 D(�− δ/3). The solid line shows
the expected decay for water with D = 2.3 × 10−9 m2/s, which is in excellent
agreement with the measurement.

24 traces are plotted versus γ 2g2δ2 D(�−δ/3) in the insert. The
data are in excellent agreement with the expected decay for the
diffusion coefficient of water, D = 2.3 × 10−9 m2/s, shown as
the solid line, over more than two decades. The water data in
Fig. 5 are therefore fully consistent with Eq. [10] using a delta
function as distribution function fTd (D, T2eff), centered around
the diffusion coefficient of water and relaxation time of the doped
NiCl2 solution. This demonstrates that even in the presence of
strong field inhomogeneities in excess of B1, it is possible to
make quantitative measurements of diffusion–relaxation time
distribution functions.

3.6.2. Water Saturated Indiana Limestone

In Fig. 6, we show an example for a sample with a more com-
plicated diffusion–relaxation distribution function. The sample
is a core of Indiana limestone, saturated with water. This sedi-
mentary rock has a porosity of 15% and a wide pore size distri-
bution that spans at least three orders of magnitudes (18). This
wide distribution of different environments for the spins is asso-
ciated with different relaxation times and degrees of restriction
for diffusion. It is interesting to study how the restricted diffusion
Within experimental uncertainty, the asymptotic echo shapes
and transient effects were identical to those in the water
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FIG. 6. Echo amplitudes for a sample of Indiana limestone saturated with
water. The encoding time was Td = 20 ms and the values of δ were chosen to lead
to a diffusive attenuation of exp{−0.2, −0.4 . . . −1} for unrestricted diffusion of
water. At short times, the five traces are separated by a smaller amount, indicating
restricted diffusion. The separation increases with time, which shows that spins
with longer relaxation time are less restricted and that diffusion and relaxation
are correlated.

measurements. The overall features of the data in Fig. 6 allow
some general conclusions even before a detailed analysis is per-
formed. Diffusion attenuates the five traces by a smaller amount
than expected for free diffusion of water. This confirms that
the diffusion of water is restricted. The data also show that the
separation is increasing for the later echoes. This indicates that
diffusion and relaxation are correlated: spins with long relax-
ation times are less restricted than spins with shorter relaxation
times.

4. RESULTS

We have applied the new technique of measuring and extract-
ing multidimensional distribution functions in grossly inhomo-
geneous fields to a number of different applications. We first
present examples of measurements of diffusion–relaxation dis-
tribution functions for the characterization of fluids. We then
show examples where the method is used to probe the geome-
try of porous media by extracting the correlations between re-
stricted diffusion and relaxation. Finally, we also demonstrate
the measurement of T1 − T2 correlation functions in strongly
inhomogeneous fields.

4.1. Characterization of Fluids with D − T2

Distribution Functions

As a first test, we applied the inversion algorithm discussed

in Appendix B to the data on doped water shown in Fig. 5. The
data consist of the amplitudes of the stimulated echo followed by
2000 echoes with an echo spacing of 375.2 µs for 24 different
ENKATARAMANAN

values of δ and Td = 30 ms. Data compression reduces these
48 024 amplitudes to 23 significant data points. Optimization in
this 23 dimensional subspace leads to the result of fTd (D, T2eff)
shown in Fig. 7. Here the regularization parameter is α = 10−2.
Since for this sample T1 = T2, we do not have to distinguish
between T2 and T2eff.

The results in Fig. 7 demonstrate that the algorithm can cor-
rectly extract the two-dimensional distribution function. The
diffusion–relaxation distribution function and the projections
along the D and T2 dimensions shown on top and the right,
respectively, both show the expected delta function like res-
ponse.

A second example is shown in Fig. 8. The sample is the vis-
cosity standard S3, a mixture of hydrocarbons with a kinematic
viscosity of 4 mm2/s at 25◦C. It has a T1 relaxation that is iden-
tical to its T2 relaxation. In this case we acquired 4000 echoes
for 24 different values of δ and Td = 30 ms. The algorithm com-
pressed the data to 25 significant amplitudes. The regularization
parameter was 10−2.

The two-dimensional distribution function fTd (D, T2) shows
a strong linear correlation between diffusion coefficient and re-
laxation time. Both the one-dimensional distribution function of
T2 and diffusion coefficient are wider than in the case of water.
It is interesting to compare this result with results by Lo et al.
[19] and Straley [20] who have measured the mean diffusion co-
efficient and T1 of a series of pure alkanes. They found that the
points of these measurements lie on a line that is shown dashed
in Fig. 8. This line coincides almost exactly with the ridge of the
extracted D − T2 distribution function of the mixture.
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FIG. 7. Diffusion–relaxation distribution function extracted from measure-
ments with the diffusion editing sequence on water doped with NiCl2 in the pres-
ence of grossly inhomogeneous fields. The algorithm successfully extracts the
delta-function like distribution function centered at the independently measured
relaxation time of 202 ms and the diffusion coefficient of water, 2.3 × 10−9 m2/s.
On top and on the right, the projections along the diffusion and relaxation di-

mensions are shown, resulting in the one-dimensional T2 and D distributions,
respectively.
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FIG. 8. Gray scale image of the diffusion–relaxation distribution function
fTd for a sample of S3, a petroleum based viscosity standard, extracted from
measurements in grossly inhomogeneous fields. The diffusion and T2 distribu-
tions are both about half a decade wide with a strong linear correlation. The
dashed line shows the correlation between mean diffusion coefficient and mean
T1 of pure alkanes reported in (19, 20).

4.2. Probing of Restricted Diffusion

In addition to using diffusion to identify and characterize
fluids, diffusion can also be used to probe the geometry of
porous media (1–3). Diffusion of fluid molecules filling the
pore space of porous media is restricted by the presence of the
pore walls. As a consequence, the time dependence of the mean
squared displacement deviates from the Einstein relationship,
〈x(t)2〉 = 2D0t , and the molecular diffusion coefficient D0 has
to be replaced by a time dependent diffusion coefficient, D(t)
(21). The value of D(t)/D0 is a measure of the degree of restric-
tion and its time dependence gives useful information about the
geometry of the pore space. Here we demonstrate that it is possi-
ble to measure the correlation between the degree of restriction
and relaxation.

An example of data for restricted diffusion measurements has
been shown in Fig. 6. In these measurements, we have limited
ourselves to small q values where the propagator can be well
approximated by a Gaussian. We can then directly apply our
inversion algorithm. With only five different diffusion encoding
times, the extracted distributions are not well defined in the dif-
fusion dimension. The quantity of interest is the first moment
along the diffusion dimension,

D̄(Td , T2eff) ≡
∫ ∞

0 d D D fTd (D, T2eff)∫ ∞
0 d D fTd (D, T2eff)

. [11]

¯
The quantity 2D(Td , T2eff)Td is the mean squared displacement
during the diffusion time Td along the gradient direction for
spins with a relaxation time T2eff.
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We have performed three-dimensional experiments to mea-
sure the time dependent diffusion coefficient D̄(Td , T2eff) for
six different diffusion times and for relaxation times between
1 ms and a few seconds. For each diffusion time Td , we ac-
quired data for five different values of δ and 4000 echoes. We
extracted a diffusion–relaxation distribution function for each
value of Td and then determined D̄(Td , T2eff)/D0 by calculating
the first moment over the diffusion dimension and normalize it
with respect to D0. The same regularization parameter was used
for all six data sets. To assess the uncertainty in the extraction
of D̄(Td , T2eff)/D0 due to noise in the experimental data, we
performed the following procedure: The data were first inverted
using the algorithm as described. Using this solution, we cal-
culated the fit to the amplitudes and added random Gaussian
noise of the same amplitude as observed in the experiments.
We then inverted this new synthetic data set and determined
D̄(Td , T2eff)/D0. This was repeated for 40 different noise real-
izations and the solutions were added. The resulting width along
the diffusion dimension is therefore a measure of the uncertainty
in extracting D̄(Td , T2eff)/D0 from the data.

As an illustration, we show in Fig. 9, results for water in
Indiana limestone. The gray scale was normalized to the maxi-
mum value for each diffusion time separately. The results show
a clear correlation between the degree of restriction, D̄/D0,
and relaxation time, T2eff. With increasing diffusion time Td ,
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FIG. 9. Restricted diffusion versus relaxation time and diffusion time of
water in Indiana limestone. For the six different diffusion times, Td , indicated

in the graphs the normalized mean squared displacement, D̄/D0, is plotted as
a function of relaxation time, T2eff. These results show a strong correlation
between relaxation times and degree of restriction.
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FIG. 10. Distributions of T2eff relaxation time for diffusion editing se-
quences for water in Indiana limestone, obtained by projecting the diffusion–
relaxation distributions of Fig. 9 along the diffusion dimension. The six curves
correspond to the different diffusion times of Td = 20, 50, 100, 200, 500, and
1000 ms, respectively. The symbols on top identify the relevant relaxation time
intervals for Fig. 11.

the magnetization of spins with short relaxation time decays
during Td and does not contribute to the results anymore. As
shown by Eqs. [9] and [11], only the spins surviving at Td

contribute to D̄(Td , T2eff)/D0. This is shown more clearly in
Fig. 10, where the projections of Fig. 9 along the diffusion di-
mensions for the six different diffusion times are shown. Ac-
cording to Eq. [8], these projections correspond to

∫∫
d D dT1

f (D, T2eff, T1) exp{−Td/T1} and can be used to obtain informa-
tion about the relationship between T1 and T2eff. Assuming a
constant T1/T2eff ratio, we obtain T1/T2eff = 1.8. This is in full
agreement with results shown in Section 4.4.

As the diffusion time is increased, diffusion becomes in gen-
eral more restricted. The dependence of the normalized mean
squared displacement, D̄(Td , T2eff)/D0, on diffusion time, and
resolved over relaxation times is shown in Fig. 11. For this dis-
play, the T2eff distributions were divided into 7 intervals as in-
dicated in Fig. 10. For each relaxation time interval, we plot in

FIG. 11. Normalized mean squared displacement, D̄(Td , T2eff)/D0, versus
diffusion length,

√
D0Td , for Indiana limestone. The different symbols indicate
different intervals of relaxation times as indicated in Fig. 10. The intensities of
the symbols are proportional to the number of surviving spins at the relevant
diffusion time and interval of relaxation times.
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Fig. 11 the average value of D̄/D0 for these spins from Fig. 9
versus the diffusion length

√
D0Td . The intensities of each point

are proportional to the number of surviving spins for the appro-
priate diffusion time and interval of relaxation times.

For each interval of relaxation times, the normalized mean
squared displacement decreases with increasing diffusion time.
Such information can be used to extract a local surface-to-
volume ratio of the pore space occupied by spins with a given
relaxation time and to calculate a surface relaxivity. A detailed
analysis and comparison with other samples will be reported
elsewhere. These data confirm that the quantity usually mea-
sured, the mean squared displacement of all surviving spins,
can be misleading, as has been noted before (22, 23). At short
diffusion times, signals from all relaxation times contribute to
this averaged mean squared displacement, whereas at long times,
only signals from long T2eff components contribute. This leads to
a pronounced bias in the time dependence of the mean squared
displacement of all surviving spins when restricted diffusion
and relaxation are correlated. Even though the normalized mean
squared displacement for each individual T2eff component de-
creases with increasing diffusion time in Fig. 11, the normal-
ized mean squared displacement of all surviving spins is almost
constant over the same range of diffusion times (23).

4.3. Effects of Susceptibility Induced Gradients

In Fig. 12, we show a representative example of results for
restricted diffusion in sandstone. In this case, the relationship
between the extracted diffusion coefficient and relaxation time
is nonmonotonic. In contrast to carbonates where we find typi-
cally a monotonic dependence as shown in Fig. 9, the extracted
diffusion coefficient for this sandstone is increasing as the re-
laxation times are decreased below 400 ms. Similar results are
found for other sandstones. We interpret this as an effect due
to the presence of internal gradients generated by the suscepti-
bility contrast between the fluid and grains of the rock. With
static gradients g used in the experiment, only the product
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FIG. 12. Extracted values of D̄(Td , T2eff)/D0 versus relaxation time T2eff

for a sample of brine saturated Berea sandstone. The upturn at short relax-

ation time is caused by the presence of susceptibility induced gradients in the
smaller pores. These gradients are at least comparable to the applied gradient of
13.2 G/cm, even though the applied field is only 414 G.
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of g2 D̄(Td , T2eff) can be measured. In the analysis leading to
Fig. 12, we have assumed that the spins experience only the ap-
plied gradient of 13.2 G/cm. We have documented earlier that
the susceptibility of sandstones is typically one to two orders of
magnitude higher than in carbonates (24) and that the resulting
internal gradients often exceed 13 G/cm in the smaller pores,
even at such low fields as 414 G used in these experiments. The
results in Fig. 12 confirm that the highest gradients are associated
with the shorter relaxation times.

4.4. T1 − T2eff Distributions

The technique of measuring diffusion–relaxation distribution
functions in inhomogeneous fields can be adapted to measuring
T1 − T2eff distributions. We illustrate this here with an example
using the pulse sequence shown in Fig. 1c. The modifications
to the spin dynamics due to the large inhomogeneities have al-
ready been discussed in Ref. (13). In the experiment, we used
30 values of τ1, spaced logarithmically between 1 ms and 10 s.
In all cases, we acquired 4000 echoes with an echo spacing
of 396 µs. Note that for the longest value of τ1, the spins are
fully relaxed at the time of the 90◦ pulse. Following (13), we
first subtracted each data set from the fully relaxed data set:
M̃(τ1, t) = M(τ1,max, t) − M(τ1, t). The echo shapes of M̃(τ1, t)
are then independent of τ1 and quickly reach an asymptotic
form with increasing echo number, analogous to the diffusion–
relaxation case discussed above. We used this asymptotic echo
shape as matched filter. The resulting amplitudes A(τ1, ktE )
show a transient effect over the first few echoes, independent
of τ1, that are again completely analogous to the results shown
in Fig. 4. After correcting for this transient effect, the ampli-
tudes are related to the two-dimensional T1 − T2eff distribution
function by

A(τ1, ktE ) =
∫ ∫

dT1 dT2eff f (T1, T2eff) exp{−τ1/T1}

× exp{−ktE/T2eff}. [12]

The kernel is fully separable and the algorithm of (17) can be
applied to invert the data and extract the two-dimensional dis-
tribution function.

The result of this procedure for a sample of Indiana lime-
stone is shown in Fig. 13. This T1 − T2eff distribution function
extracted from measurements in strongly inhomogeneous fields
is in excellent agreement with a previous determination based
on measurements in a homogeneous field and reported in (16).
In addition, note that the T2eff distribution obtained by projection
from the T1 − T2eff measurement and shown on top of Fig. 13 is
in good agreement with the T2eff distribution obtained by pro-
jection from the earlier diffusion −T2eff measurement for the

shortest diffusion encoding time, Td = 20 ms, and shown as the
top curve in Fig. 10.
OMOGENEOUS FIELDS 39

1

0

f (
T

2e
ff)

0.01 0.1 1 10

0.01

0.1

1

10

10
f (T1)

0.01

0.1

1

10

T
1 

 [s
]

0.01 0.1 1 10
T2eff  [s]

FIG. 13. T1 − T2eff distribution for water in Indiana limestone measured in
grossly inhomogeneous fields. The dashed line shows the line T1 = T2eff. The
projections along the T1 and T2eff dimensions result in the one-dimensional
distributions shown on top and on the right, respectively. The two-dimensional
distribution, extracted from measurements in strongly inhomogeneous fields, is
in good agreement with the distribution reported in Ref. (16), measured on the
same rock in a homogeneous field.

5. CONCLUSION

In this paper, we have introduced a new technique to mea-
sure quantitatively multidimensional distribution functions
involving diffusion and relaxation, even in the presence of
grossly inhomogeneous fields. This opens up new applica-
tions for the inside–out type of NMR measurements. We
have demonstrated this with examples for fluid characterization
and for the probing of the geometry of restrictions in porous
media.

The technique developed is rather general and can be read-
ily adopted to other applications or pulse sequences. We have
presented the necessary tools to analyze the spin dynamics of
modified sequences. For the editing part of the sequence, the
magnetization is divided into different coherence pathways and
the evolution can then be determined following (13). To calcu-
late the evolution during the repeated refocusing cycles of the
sequence, it is best to use the “method of effective rotation axis”
developed in (12, 15).

The measurement of diffusion–relaxation distribution func-
tions is a powerful means to characterize samples. We have
demonstrated here the technique in the presence of grossly
inhomogeneous fields. This information can also be obtained
in more conventional ways using pulsed field gradients in a

homogeneous field. In that case, the data inversion can be
achieved with the same algorithm used here.
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APPENDIX A: SPIN DYNAMICS IN
INHOMOGENEOUS FIELDS

A.1. Editing Part of the Sequence

For the initial part of the sequence, the spin dynamics is treated
exactly by considering the evolution along each coherence path-
way separately. We illustrate this approach for the diffusion edit-
ing sequence shown in Fig. 1a that uses a stimulated echo as an
editing element. The cases of inversion recovery and multiple
echoes have already been treated in (13).

In this calculation, we follow the evolution of M±1 ≡ Mx ±
i My, M0 ≡ Mz . The magnetization following a number of pulses
can be decomposed into contributions from different coherence
pathways. Each coherence pathway can be characterized by a
spectrum, a frequency independent diffusion attenuation, and a
frequency independent relaxation attenuation (13). When more
than one coherence contributes to the signal, the overall diffusion
and relaxation attenuations are weighted sums of the individual
contributions and become frequency dependent. To obtain ker-
nels with a simple dependence on diffusion, it is therefore essen-
tial to ensure that only a single coherence pathway contributes
to the signal. For the diffusion editing sequence with stimulated
echo, this can be achieved with the 16 step phase cycling listed
in Table 1.

The desired stimulated echo corresponds to the pathway
{0 → −1 → 0 → +1}. This pathway contributes only to the
transverse magnetization, mA = Mx + i My , which is given by
(13)

mA = {
�

(3)
+1,0�

(2)
0,−1�

(1)
−1,0

}
exp

{
−q2 D

(
� − δ

3

)}

× exp

{
− � + δ

T1
− 2δ

(
1

T2
− 1

T1

)}
. [13]

Here we used the notation q ≡ γ gδ. The �
(k)
l, j are matrix tran-

sition elements of the kth pulse between initial coherence j and
final coherence l. These matrix elements depend only on the
pulse parameters of the kth pulse and the offset frequency, �ω0,
and are independent of diffusion and relaxation (13). For RF
pulses of phase ϕ, duration tp, frequency offset �ω0, and RF
field strength ω1, the relevant elements are given by

�+1,0 = ω1

�

{
�ω0

�
[1 − cos(�tp)] − i sin(�tp)

}
e+iϕ [14]

�−1,0 = ω1

�

{
�ω0

�
[1 − cos(�tp)] + i sin(�tp)

}
e−iϕ [15]

�0,−1 = 1

2

ω1

�

{
�ω0

�
[1 − cos(�tp)] + i sin(�tp)

}
e+iϕ [16]
Here � ≡
√

�ω 2
0 + ω 2

1 is the nutation frequency.
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The selection of the desired coherence pathway through phase
cycling is based on the dependence of the matrix elements �

(k)
l, j

on the phase of the RF pulses, φk , that goes like ei(l− j)φk (13).
Therefore, the phase of the stimulated echo, φste, depends on
the phases of the first three RF pulses, φi , as �φste = −�φ1 +
�φ2 + �φ3, valid for an arbitrary offset frequency. The phases
of the RF pulses and acquisition in Table 1 are varied systemat-
ically according to this relationship such that the contributions
of the stimulated echo add coherently whereas the contributions
from all other possible coherence pathways are eliminated. Stan-
dard phase cycling of the 180◦ pulses of the CPMG part is also
included to eliminate pulse ringing and dc offsets.

To compensate for finite pulse width effects, the spacing of the
initial two 90◦ pulses is reduced by 2t90/π from δ. As discussed
in (13), this adds a phase factor e+i2�ω0t90/π to Eq. [13] that com-
pensates the frequency dependent phase of �

(3)
+1,0�

(2)
0,−1 �

(1)
−1,0 to

first order.

A.2. CPMG Part of the Sequence

The spin dynamics describing the repeated refocusing by the
long string of 180◦ pulses has to be analyzed differently from
the initial editing part of the sequence. Off resonance, a very
large number of different coherence pathways contribute to the
signal of the later echoes, preventing the direct application of
the coherence pathway approach. We use instead the “method
of effective rotation axis” (12). It is based on the analysis of the
propagator over a single refocusing cycle, which is to first order
a rotation.

The diffusion editing sequence can be viewed as a modified
CPMG sequence where the initial 90◦ pulse is replaced by the
stimulated echo sequence that acts as an effective 90◦ pulse
with diffusion sensitivity. For simplicity, we assume here that
the echo spacing tE is short enough to make additional diffusion
effects insignificant during the repeated refocusing parts of the
sequence. Note that for measurements on rocks, this requires low
magnetic fields of the order of 2 MHz or lower, otherwise diffu-
sion in field inhomogeneities induced by susceptibility contrasts
in the sample becomes important (24).

For echo spacings tE much shorter than the relaxation time,
the evolution from one echo to the next is well described by an
overall rotation around an axis n̂ with an angle α. Both n̂ and α

depend on the offset frequency, �ω0, and the RF field strength,
ω1. With this notation and ignoring relaxation for the moment,
a simple expression is obtained for the magnetization �m(ktE )
after k refocusing cycles:

�m(ktE ) = n̂(n̂ · �mA) + [n̂ × �mA] sin (kα)

+ [ �mA − n̂(n̂ · �mA)] cos (kα). [17]

Here �mA is the magnetization at the end of the editing part of

the overall sequence, i.e., at a time tE/2 before the first 180◦

refocusing pulse, and is given by Eq. [13].
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The components ny ≡ n̂ · ŷ and nz ≡ n̂ · ẑ are given by

ny = ω1

�

sinβ2{[
ω1
�

sinβ2
]2 + [

sinβ1 cosβ2 + �ω0
�

cosβ1 sinβ2
]2}1/2

[18]

nz = sinβ1 cosβ2 + �ω0
�

cosβ1 sinβ2{[
ω1
�

sinβ2
]2 + [

sinβ1 cosβ2 + �ω0
�

cosβ1 sinβ2
]2}1/2

,

[19]

where

β1 = �ω0tE/2 [20]

β2 = � t180/2. [21]

The component of n̂ along x̂ is always zero. The angle of rotation,
α, is given by

cos

(
α

2

)
= cosβ1 cosβ2 − �ω0

�
sinβ1 sinβ2. [22]

Here we have assumed that 0 ≤ α < 2π .
In sufficiently inhomogeneous fields, the distribution of an-

gles α is wide enough so that the second and third terms in
Eq. [17] average out after only a few echoes and do not contribute
to the measured echo amplitudes anymore. The echo shape be-
comes then independent of the echo number, k. For extended
samples in a strayfield setup, we have shown that these extra
two terms are only noticeable for the first and second echoes of
a CPMG sequence (12, 15). For the later echoes, it is therefore
sufficient to consider only the first term in Eq. [17].

A.2.1. Relaxation

Relaxation leads to an attenuation of this first term with a
decay rate 1/T2eff that is a weighted sum of the longitudinal and
transverse relaxation rate (12),

1

T2eff
= 1

T2
− (n̂ · ẑ)2

(
1

T2
− 1

T1

)
. [23]

Here we have assumed that the echo spacing tE is much shorter
than the relaxation time T2, or more precisely tE  α

2π
T2. Ex-

actly on resonance, n̂ · ẑ = 0 and the measured relaxation time
T2eff = T2. However, off resonance, the measured relaxation time
is in general a combination of T2 and T1. For samples in very
inhomogeneous fields, the average value of 〈(n̂ · ẑ)2〉 is typically
of the order of 10% (12). Strictly speaking, we measure there-
fore not D − T2 correlations, but D − T2eff correlations. Using
the sequence shown in Fig. 1c, it is possible to measure T − T
1 2eff

correlations in the same experimental arrangement and use them
to transform D − T2eff correlations to D − T2 correlations. For
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our applications, the difference between T2 and T2eff is typically
no more than a few percent.

APPENDIX B: ALGORITHM FOR DATA INVERSION

Given the measured echo amplitudes, A(t, δ), the goal is to
extract the diffusion–relaxation distribution function that best
describes this data according to Eq. [10]. For this purpose, it
is convenient to rewrite Eq. [10] for the discrete times of the
experiments in matrix form:

A = K1 F K ′
2 + E . [24]

Here A is the matrix of measured echo amplitudes, K1 is the
matrix of the diffusion kernel, exp{−γ 2g2δ2 D(� − δ

3 )}, K2

is the matrix of the relaxation kernel, exp{−t/T2eff}, and F
is the matrix of the diffusion–relaxation distribution function,
fTd (D, T2eff). E indicates the noise term, assumed to be Gaussian
with zero mean.

It is well known that the inversion of Eq. [24] with such smooth
kernels is ill-conditioned, i.e., small changes in the noise term
lead to vastly different inversion results. In addition, the data
matrix is in general very large. For a typical case of 5 diffusion
encodings and a few thousand echoes, the data matrix has about
104 elements. These two complications make an inversion based
on a simple least squared optimization of Eq. [24] both unsta-
ble and very slow. In addition, the solution for the distribution
function is not guaranteed to be positive.

We have recently developed an efficient algorithm to solve
two-dimensional problems of the form of Eq. [24] with non-
negativity constraint in an optimization framework (17). This
algorithm has already been applied by Song et al. (16) to obtain
T1 − T2 distribution functions of water saturated rocks measured
in a homogeneous field at 2 MHz. We have adapted the algorithm
for our problem of diffusion–relaxation inversion.

The algorithm consists of three main steps. In the first step, the
highly redundant data are compressed. This is achieved by per-
forming separate singular value decompositions of each kernel,
K1 and K2. This results in the singular values s( j)

1 and s(k)
2 for the

two kernels, respectively. The data are then projected into the
subspace associated with the most significant singular values.
In our application, we choose this subspace by requiring that
the product of the associated singular values s( j)

1 s(k)
2 be larger

than 10−3 times the largest such product. We find that the exact
condition defining this subspace is not critical. The subspace has
to be large enough to include all significant features, but small
enough to avoid large noise amplification. In our applications,
this compression leads to a large data reduction from over 104

points to typically between 17 and 25 data points.
The second step consists of an optimization within this re-

duced data space. To assure stability, we include a regularization
term of the form α‖F‖2:
F̂ = arg min
F≥0

‖ Ã − K̃ 1 F K̃ 2‖2 + α‖F‖2. [25]
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The tilde indicates that the data were compressed and that the
kernels operate only in this subspace. The nonnegativity con-
straint complicates this optimization. In our routine (17), we
take advantage of the algorithm by Butler, Reeds, and Dawson
(BRD) (25) to map this constrained problem onto an uncon-
strained optimization problem. This unconstrained problem can
then be solved in a straightforward manner.

In the third step, the regularization parameter α is determined
self-consistently. Large values of α lead to broad, featureless
distribution functions that do not fit the data very well. As α

is reduced, the fitting error gets initially reduced, but ultimately
the solution becomes unstable and spurious features appear in F .
Roughly speaking, the optimal regularization parameter αopt is
chosen such that it results in the smoothest distribution function
that still fits the data. Reducing α below αopt barely reduces
the fitting error, but leads to instabilities. Increasing α leads to
noticeably larger fitting errors. As discussed in (17), there are
several methods to determine αopt. In our application, we have
used mainly the method first proposed in the BRD algorithm
(25).
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